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1 Abstract

Reinforcement Learning is a promising area of research that is capable of solving many problems in
difficult domains. However, one of its largest problems that it currently has is its lack of sample efficiency.
Agents can take millions of episodes to train fully, which is not feasible in many scenarios. One solution
to this is to also learn a model, which can create an internal simulation of the environment. This can help
reduce the number of samples needed, and can event reduce the computational requirements, but it has
several weaknesses. Crucially, current models take a large amount of time to make predictions that are far
in the future, which can severely limit the model’s capabilities. What’s more, the state of the art model
quickly becomes inaccurate for long-range predictions. This paper proposes using a conditional generative
adversarial network (GAN) to model these dependencies in cosntant time. To make computation more
feasible, the GAN operates in a latent space that is tied to the agent. We show that this formulation is
equivalently usable by the agent, and achieves competitive results on common Atari environments. A novel
metric is suggested to compare this model with the state of the art, as this model’s predictions are in a latent
space, while the state-of-the-art makes predictions on the input space. Both models are evaluated using this
metric, and significantly outperform baseline measures while reaching similar levels of accuracy by the end
of training.

2 Introduction

Reinforcement Learning is an exciting area of machine learning and AI that is capable of solving a
wide variety of tasks in different domains. By using rewards to teach an agent to act in an environment,
a model can be trained end-to-end with data, giving state-of-the-art results with minimal hardcoding by
software engineers. Recently, reinforcement learning has created superhuman agents for games that were
previously intractable, including Dota 2 and the famous game of Go. However, these achievements were
largely the result of incredible amounts of computing power. Modern reinforcement learning methods are
difficult to apply to real-world tasks because of the massive amounts of data and computational resources
that are needed to train them. Current methods are not very sample-efficient and difficult to train, leading
to the machine-learning mantra: “If you don’t have to use reinforcement learning, don’t”.

There are many methods that attempt to make reinforcement learning methods more sample-efficient.
Deep models are one method for improving the performance of agents by simulating data from past expe-
riences. However, simulating long-range dependencies with these models is computationally expensive and
prone to error.

Generative Adversarial Networks (GANs) present a new opportunity for modeling, as they are able
to generate samples from a distribution learned from data. Conditional GANs allow for GANs to model
conditional distributions. GANs represent a massive leap forward in generative models, and may have
application in generating possible future states from a current state.

This project shows a novel method for using GANs to make high quality predictions about future states
in a method that takes constant time, regardless of how far in the future the prediction is. By predicting a
latent space representation of the state space, the GAN is made much more lightweight and easy to train,
without losing any interoperability with the agent.
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3 Related Work

3.1 Reinforcement Learning

Reinforcement learning is a field in machine learning and artificial intelligence, concerned with teaching
an agent to complete a task via a reward function, which the agent seeks to maximize. The problem differs
from supervised learning, because the agent’s actions affect the rewards it gets and the information it
obtains. For instance, consider an agent attempting to make money. If the agent can play a violin well,
building a network of relationships with famous orchestral members may be highly advantageous. However,
if the agent has no musical skills, networking with musicians becomes much profitable. In this scenario, the
agent’s properties had an effect on the value of the action. In contrast, the correct answer in supervised
learning is static - a class in classification problems or a value in regression problems [27] [23].

Until recently, reinforcement learning algorithms have struggled to solve problems in non-trivial do-
mains. However, when Mnih et al. showed it was possible to use raw pixels to train an agent to play Atari
games at super-human levels, the field was reinvigorated [19]. The method used deep learning to approxi-
mate the optimal policy [20]. Deep learning has recently seen a resurgence due to large increases in available
processing power and data, as well as the use of GPUs to parallelize and speed up the relevant computations
[16] . Companies and institutions like Google and OpenAI have made headlines by using similar techniques
to create human-level bots for incredibly complex games, such as Go [25], Starcraft II, and Dota 2 [21].
However, these projects require incredible amounts of computational resources, which are not available to
most researchers and are not practical for testing. As a result, most techniques use a set of common baseline
environments to obtain empirical results.

3.1.1 Common Baselines

There are a variety of environment classes that are commonly reported as baselines in state-of-the-art
papers. One of the most popular environments is OpenAI’s Gym. Gym offers easy-to-use interfaces with
many Atari games, as well as other environments. These games are relatively light to compute but difficult
to learn, making them ideal benchmarks [18] [1].

CoMoCo Lab presents another useful way to test agents. Designed as physics engine by the University of
Washington, CoMoCo Lab is often used for simulating tasks such as learning to walk or climb. Reinforcement
learning has had a strong history of success in these environments, which can be incredibly varied. Perhaps
the most recent addition is Deepmind’s Lab, which consists of 30 levels for training and testing agents.
Despite CoMoCo and Deepmind Labs presenting interesting challenges, this project will focus on solving
Atari games. See the experiments section for further details.

3.1.2 Models

Across all environments, reinforcement learning has run in to several severe problems that inhibit it from
succeeding in real-world environments. Agents take extraordinarily large amounts of data and computing
power to train - typically on the order of millions of timesteps or higher. In these simulated environments,
obtaining large amounts of data is typically not a problem, but it is often difficult to create environments
for learning in practice.

One historical way to attempt to address this problem is through the use of models. With a model, the
agent learns to internally simulate the environment as it interacts with the outside world [7]. With the rise
of deep learning, this method has recently been updated to use a neural network to model the environment
[14]. Kaiser et al.’s work uses a modified convolutional neural network (CNN) to model it’s environment by
predicting the next frame from the current frame. A CNN is used to extract high-information features from
recent input frames. These features, along with information about the agent’s move at that state, are then
fed in to deconvolutional layers. The output is interpreted as the change between the current frame and
the next, and is added to the input frame. The network is trained to minimize the clipped mean squared
error between the pixels of the predicted next frame and the true next frame. The model can then be
used to model longer time dependencies by predicting further observations based on its own predictions.
For instance, assume that the model predicts the lightning will light up the sky in 1 second. To obtain a
prediction for 2 seconds in the future, one can treat the predictions so far as fact and ask the model ’what will
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happen 1 second after the sky lights up with lightning’ (to which the model predicts the sound of thunder).
To obtain a prediction for 3 seconds in the future, you simply ask the model ’what will happen 1 second
after we hear thunder?’. In this way, you can continue using the model’s outputs as its inputs to model
dependencies further and further in to the future.

Unfortunately, to predict t seconds in the future, the model needs to make t predictions, which can be
costly. For instance, a human might hear the thunder and naturally assume that it will soon begin raining if
it is not already, without having to think about when they will hear thunder. Similarly, because the model
always follows a particular realization of the possible chains of events, it may predict make increasingly
unlikely predictions as it predicts further in to the future.

Another method for making reinforcement learning more sample-efficient is known as hindsight-experience
replay. After each failure, the formulates a new reward function that would its actions would have gained
rewards for, and uses this to improve its future iterations. For example, if an agent were learning to shoot
a hockey puck at a goal and accidentally shot the puck three feet to the left of the goal, it can learn from
what would have happened if the goal were three feet to the left (score!). It then uses this information to try
to better adjust its next shot at the real goal. This method has been shown to be effective at speeding up
learning in sparse reward spaces, such as the above example, where the agent receives a reward if and only
if it makes a goal. However, it is not well-studied in other environments and requires a method for adapting
its goal function after failures, which can be difficult to implement. As a result, it is not a general-purpose
substitute for a model.

3.2 Generative Adversarial Networks

Neural Networks are a common method for modeling large amounts of data with complex dependencies.
These models are effectively stacked layers that each map their input to a latent space, that hopefully
represents the important information for the model. The most basic type of layer is a dense layer, which
is simply a linear projection followed by a simple non-linearity, which is applied pointwise. Some popular
non-linearities are the sigmoid, tanh and (leaky) ReLU functions. The parameters of the linear projection
are usually fitted by a variant of stochastic gradient descent.

3.2.1 Convolutional Neural Networks

When handling image data, a convolutional neural network is usually used to reduce the number of
parameters that need to be fitted. A convolutional kernel is applied in a sliding-window fashion to the data
to extract meaningful features that exploit the spatial organization of the data. For example, a low-level
kernel may act as an edge detector, and will output a 2D array showing where vertical edges are found in
the picture. By having a stride greater than 1, this process can also reduce the height and width of the
image. This process can easily be inverted, resulting in deconvolutional layers that can be used to map from
lower-dimensional spaces to higher-dimensional spaces (e.g. increase the number of pixels in an image) [9].

3.3 Generative Models

One common application of neural networks is approximate distributional sampling via generative
models. Given a dataset that is assumed to be generated by sampling from some prior distribution, neural
network architectures can be devised to approximate samples from the prior distributions given the observed
data. One classical way of achieving this was through the usage of variational autoencoders(VAEs) [15].
Variational autoencoders are neural networks that attempt to reconstruct their own inputs, but have heavily
reduced dimensionality in some layers (see figure 1). This forces the network to attempt to represent the
observed data in a latent space of heavily reduced dimensionality. Samples are drawn from the latent space
(represented in the middle), and fed through the second half of the VAE to obtain samples from the target
distribution. This project uses some ideas from a VAE, using layers trained for one purpose in a related way.
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Figure 1: Diagram of layout of a generic VAE

While these methods provide reasonable results, more recently, generative adversarial networks (GANs)
have been used to achieve similar goals with great effect [10][22]. In the set-up of GANs, a generator is fed
noise and its output is interpreted as a draw from the target distribution. It maps the low-dimensional noise
to high-dimensional spaces such as images by using layers that have more output dimensions than input
dimensions (and, in the specific case of images, deconvolutional layers are used) [22]. A separate network,
called the discriminator, takes in a datapoint x, generated either from the (true) training set, or the (fake)
outputs of the generator. The discriminator is trained to predict the probability that the datapoint came
from the training set versus from the generator. For instance, if the goal is to generate pictures of animals,
the discriminator would be trained to recognize ‘is this a real picture of an animal?’. The discriminator’s
loss is then the Kullback-Leibler Divergence between the true label distribution and the target distribution,
while the generator’s loss is the negative of the discriminator’s loss (see figure 2 for reference). In this way,
the discriminator and the generator play a game against each other, with the generator trying to learn to
fool the discriminator, and the discriminator trying to get better at not being fooled. While the theoretical
underpinnings for this method are not well-understood, it has achieved many excellent results.

Figure 2: Basic Diagram of Generative Adversarial Network Organization

3.3.1 Conditional GAN

The method can be extended to generate samples from conditional distributions as well. In the con-
ditional formulation, when the generator is given noise from which to generate a sample, it is also given
additional information representing the information to be conditioned upon [17] . For example, the genera-
tor might receive 10 dimensions of Gaussian noise, as well as 2 dimensions, indicating whether the generated
picture should be of a cat or a dog. The discriminator is also fed the additional information at decision time.
So, instead of asking the discriminator ‘is this a picture of an animal?’, the algorithm would sometimes be
asked ‘is this a picture of a cat?’ and other times, it would be asked ‘is this a picture of a dog?’. This
formulation has had success in generating distributions on command, with applications generating pictures
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of faces[2] and in style transfer of artwork [13]. These methods allow for modeling random function draws
from a wide domain of distributions, making GANs an interesting technique for modeling reinforcement
learning environments.

4 Methods

This project relies on training a model to encode information about and act within the environment.
One popular method for training an agent to maximize its reward in a reinforcement learning environment
is Deep Q-learning.

4.1 Deep Q-Learning

We assume that the environment consists of a real-valued, finite reward function R that is a function
of the current state s and the action that the agent takes, a. Similarly, we assign a transition probability
P (s′|s, a) that represents the probability we are in state s′ immediately following executing action a in state
s. Let π be an agent such that π(a|s) represents the probability of the agent choosing action a in state s. If
we intend to maximize our total reward, then we can define the value of a state to be

V (s) :=
∑

a∈A(s)

π(a|s)Ert∼R(s,a),s′∼P (s′|s,a)

[
rt + γV (s′)

]
Where 0 < γ < 1 is a term included to ensure that the value function always converges. This represents
the sum of all of the rewards we can expect to receive after landing in state s, with rewards t timesteps in
the future discounted by a factor γt. If we decide on an action a, we can similarly define the utility of that
action using a Q-value:

Q(s, a) := Ert∼R(s,a),s′∼P (s′|s,a)

[
rt + γV (s′)

]
If an agent were to behave optimally to obtain the maximum rewards, it would always choose the action
with the highest Q-value with probability 1 [27][23]. As a result, learning the Q function is sufficient to
learning the optimal policy in a given environment. However, storing these values in a table takes |S| × |A|
entries, which is intractable in most environments. Instead, a neural network is often used to approximate
the Q function. After each observation, the network’s loss is proportional to

rt + γ max
a′∈A(s)

[
Q(st+1, a

′)
]
−Q(s, a) (1)

, which is the error between the predicted and observed reward. Because of the presence of γ, we can show
that this function is a contraction, and will always converge to a fixed point.

Notably, this process is sped-up using the bootstrapped predictions for Q(st+1, a
′). However, training a

network’s losses based on its own predictions can be unstable, so we typically use a target network, denoted
Q−, to approximate Q-values for subsequent states. This substantially improves the stability and speed of
the convergence to the correct values. In practice, the target network is typically an older version of the
main Q-network, but it isn’t updated as frequently [20].

4.1.1 Double Q Network

However, this formulation can still cause issues. If we rewrite equation 1 with the target network as

rt +γQ−
(
st+1, argmaxa′∈A(st+1)

[
Q−(st+1, a

′)
])
−Q(s, a), we can see that Q− is being used twice, selecting

the maximum among its own predictions.
This can lead to the overestimation of the value of certain states, which can substantially slow learning.

Because of this phenomenon, some actions may not be explored sufficiently and the Q-values will have slower
convergence to their fixed points. The simple fix is to separate the approximate used to choose the action a′

and the one used to evaluate a′. Luckily, we already have 2 different estimates: Q and Q−. As a result, we
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make a minor edit to the equation to improve stability. Our loss function is then :

(
rt + γQ−

(
st+1, argmaxa′∈A(st+1)

[
Q(st+1, a

′)
])
−Q(s, a)

)2
(2)

This formulation, using two Q-networks, is known as a double deep q-network (DDQN) [29].

4.1.2 (Prioritized) Experience Replay

Even with the DDQN formulation to help stabilize training, deep q-networks may still not reach stable
estimates if naively trained on data as it is observed. Let wt represent the weights of the network at epoch t
and (∆w)t represent the gradients of the network at that epoch. In a network with a constant weight decay
β ∈ (0, 1) and learning rate α ∈ (0, 1), the new weights will be wt+1 = α(∆w)t + βwt. We can then define
wt+1 as a weighted sum of previous updates [28] :

wt+1 =

t∑
j=0

αβt−j(∆w)j (3)

As a result, the network can only learn a the average of a set of values if each batch of values is selected
from the same distribution. Otherwise, it will be biased towards fitting the most recent observations[19].
However, observations in reinforcement learning are strongly autocorrelated. The observation at time t is
typically not very different from the observation 1 nanosecond later, so the agent may overfit its current
observations and ‘forget’ what it has seen before [24].

The solution to this problem is to store recent observations at memory, and update the network by
randomly selecting observations from memory, ‘replaying’ those experiences. This helps keep the distribu-
tion of observations more stable, and allows the network to learn low-probability events and better handle
environments with longer episode times. To improve sample-efficiency, we prioritize replaying experiences
where our Q-value estimates were most incorrect. Intuitively, humans do something similar. You never lie
awake in bed thinking about how well you did at walking today, because it’s something that you understand
well. Instead, your brain focuses on the moments in the day that were most surprising, as there is potentially
more to learn from them. While this method is a near-strict upgrade on performance, it can consume a lot
of memory, because large amounts of previous frames need to be stored. As a compromise, many algorithms
(including the implementation used in this project), only store the most recent couple-thousand of frames,
discarding old memories entirely.

4.1.3 ε-greedy exploration

Because the environment is inherently stochastic, the agent must collect many samples at each state
to get an accurate estimate of its value. Unfortunately, it is computationally infeasible to explore ever state
equally in large environments. As a result, an exploration policy is needed. One option is an ε-greedy
approach, where it always takes the action with the highest Q-value, except that it takes a random action
with probability ε.

There are many other exploration schemes, such as Thompson Sampling [5], UCB-methods [4] and
exploration bonuses [25]. However, to keep the implementation and interactions with the prediction model
simple, this project uses a simple ε-greedy approach. ε is steadily decreased as the network is trained,
allowing it to approach a more optimal solution (because taking random actions is not optimal). However,
the floor for ε is 0.01, so that the algorithm never stops exploring and does not get stuck.

4.1.4 Dueling Network

Another method for improving the performance of a Deep-Q Network is through the use of a dueling
network. Because in many states, estimating the value of the state is more important than accurately
modeling the Q-values, the dueling network architecture splits the two functionalities [30]. The network
bifurcates in to two heads, one predicting the value of the state and the other predicting the advantage of
each action. The advantage A(s, a) of the action is the advantage the agent gains by taking action a in
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state s over the expected value of the state. The Q-values can then be reconstructed from the value and the
advantages.

Q(s, a) = V (s) +A(s, a)− 1

|A(s)|
∑

a′∈A(s)

A(s, a′)

While this increases the computational requirements of running a single pass of the network, it does sub-
stantially decrease the training time.

4.2 Prediction

As discussed earlier, predicting future states can be very useful for increasing sample efficiency and
training speed. As seen in Kaiser et al.’s work, this has traditionally been done by predicting the full
observable state. In the case of Atari games, this amounts to generating a new RGB image. However,
much of the information in the image is superfluous or redundant and predicting it can be difficult. In a
simple case, if you asked someone what would happen if you jumped in Mario, they would respond that you
everything else would probably remain unchanged, but Mario would be launched in to the air. However, if
you asked them to draw what that looks like, the drawing you would receive would likely be very different
from the actual screenshot of what happens. One might naturally object that one’s ability to draw frames
of Mario is irrelevant to their ability to understand the mechanics of the game. The description that they
initially responded could be viewed as the latent space representation of the most important information of
the state.

4.2.1 Latent Space Representation

Because the output of each layer of a neural network relies only on the output of the previous layer, we
can represent it as a composition of functions. For a given agent π, we can write π = πN ◦ πN−1 ◦ . . . ◦ π1.
In fact, we can interpret the sequential application of any number of these layers as a mapping to and
from latent spaces that represent the important information in condensed form. Formally, we can define
πA = πN ◦ πN−1 ◦ . . . ◦ πK+1, πL = πK ◦ πK−1 ◦ . . . ◦ π1. Similarly, π = πA ◦ πL. Assuming the inputs
are in some space I, then πL : I → L maps the input space to an information-dense latent space L, and
πA : L → A maps this latent space to Q-values for each of the actions. This latent space L has the benefit
that it has all of the information that the agent will need for decision making, and, as the agent continues
training, will become increasingly information-dense, with less noise. As a result, making predictions in this
space, with reduced dimensionality, is just as useful to the agent as making predictions in the original space.

4.2.2 Distributional Perspective

In a stochastic environment, making a prediction about a future state is equivalent to making generating
samples from a random function. Consider a state s′. In predicting the future, we should predict less likely
futures less often and relatively likely futures are something that the agent should suggest. The probability
of state s′ occurring k frames from now, given that we are at state s is given by T (s′|s, k). We define it as:

T (s′|s, k) =
∑
s∗

T (s∗|s, k − 1)
∑

a∈A(s∗)

π(a|s)P (s′|s∗, a)

Where T (s′|s, 0) is 1 if s′ = s and 0 otherwise. As a result, we have a function for the probability distribution
of states k timesteps from now, and making predictions is equivalent to drawing samples from this target
distribution. Because we can define P (s′|s, a) even when the state is not fully observable, this formulation
works equivalently for a partially-observable markov decision process (POMDP).

4.2.3 GAN Predictions

Because we have reframed our problem as sampling from a conditional distribution, we can use a GAN
to predict future spaces. If we condition on our current state s and the desired time delta k, we can use a
conditional GAN to approximate function draws from T (s′|s, k). We simply provide s and k as inputs to the
discriminator and the generator, and we can train on examples generated by agent trajectories. One item that
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is particularly of note, is that this formulation works equally well even if the underlying process is partially
observable. As a result, even if the representation of s provided does not include all relevant information,
this model will still attempt to make the best possible prediction with the information available. Therefore,
even if the latent space does not successfully encode all relevant information, the information encoded can
still be used to make predictions about the future state space.

5 Experimental Design

5.1 Experiment Design

5.1.1 Environments

The model was tested in OpenAI’s gym environment, using some popular Atari environments - MsPac-
man, Breakout and Asteroids [6]. MsPacman is a game similar to the original Pacman, in which the agent
attempts to collect as many dots as possible while running away from ghosts. Breakout, also known as
Brickbreaker, is a game where the agent tries to bounce a ball in to static bricks on screen in a similar
manner to pong. Asteroids is a game in which the agent moves a small spaceship and attempts to avoid
incoming asteroids in order to stay alive. Experiments were conducted in each of these environments, using
the same design for each game for consistency.

5.2 Agent Design

Figure 3: Sample picture of state from MsPacman after preprocessing. Shown with colors for increased
contrast.

In order to reduce the dimensionality of the input space and reduce computation time, some preprocess-
ing was included (see above figure for example). The images of the state space were downsampled to 84x84
and converted to grayscale before being input to the network. The DDQN consisted of three convolutional
layers with 5x5 kernels and 64 features, followed by 2 dense layers with 256 nodes each. From here, the
DDQN splits into two heads, one to predict the value function and the other to predict advantage. Each
head has two layers: an output layer and a hidden layer with 256 nodes. The other details of the network are
as described in the methods section. The DDQN was trained with the loss function described in methods
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using RMSProp, trained for a total of twenty million timesteps a piece. ReLU is the non-linearity for each
layer.

5.2.1 Latent Space Representation

The first four layers of the network (plus preprocessing) are used to encode the state in to the latent
space. This was chosen as a middle point, because it has significantly reduced dimensionality (256 dimensions
versus the 7,000+ dimensions in the input), but it is still detecting relatively low-level details that are more
likely to be informative about the environment than they are about what action to take. This encoding is
never trained independently, and is simply taken from the the model after training. It is not trained while the
generator and discriminator are training. These layers are equivalent to πL described in methods. Because
πL is an intermediate layer in the agent (π), the final layer has ReLU as an activation function. The rest of
the network is denoted as πa.

5.3 Model Design

5.3.1 Generator

The generator consists of two dense layers, with 256 hidden nodes. It receives the latent space repre-
sentation of the state space concatenated with noise as input. It outputs a prediction in the latent space,
which has 256 dimensions. All nonlinearities used are ReLU. Because ReLU is applied in the final layer of
πL, it is applied in the output layer here as well. No activation functions are present in the final layer of any
other networks.

5.3.2 Discriminator

Similarly, the discriminator takes in the initial state (s) and the future state (s′) and predicts whether
or not the future state is generated from a real distribution. Both inputs are first projected in to the latent
space using πL, so the two states together mean it has 512 dimensions as input. The network has 2 layers,
with 256 hidden nodes and ReLU as an activation function on all layers except the output.

5.4 Existing Algorithms

5.4.1 Baseline

To check that the methods in this project are non-trivially predicting the future, a trivial baseline is
included for comparison. The baseline is simply the identity function. As a result, it predicts that the future
state is the same as the current state, forecasting that there is no change whatsoever. This baseline provides
a simple sanity check and helps visualize how long it takes for the networks to achieve predictive capabilities.

5.4.2 Iterative Predictor

This project also implements as lightweight version of the state-of-the-art model as comparison. In
Kaiser et al.’s work, they train an iterative model to predict the next frame based on the previous four
frames and the agent’s next action. Because the GAN model proposed in this paper has no information
about previous states or the actions of the agent, this information is removed from this model as well. The
model takes a preprocessed image as input and applies 2 convolutional layers to it, each with a 5 by 5 kernel
and stride of 2. After a single dense layer with 441 nodes, 2 deconvolutional layers are applied to get an
output of the same shape as the input. This output is interpreted as the change between the two states (so
no change would be represented by a mask of all 0’s). To obtain a prediction for the new state, it is added
to the input. The loss function is as described in Kaiser et al., using the mean-squared error between the
predicted pixels and the actual observation. To prevent the loss from growing to large, the loss is clipped at
10. To obtain predictions k timesteps in the future, the model makes k successive predictions based on its
own outputs. For more details, see the description in ‘Related Work’.
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5.5 Testing

For each environment, the agent was trained for twenty million timesteps. After training, the param-
eters on all layers were frozen and the first four layers were taken as πL. The network was then used to
sample trajectories from the environment. From these trajectories, random pairs of frames were selected
to form the training and test set, which each had 5,000 pairs. For simplicity, all pairs were separated by
10 timesteps. Future work will expand this to work with multiple time intervals. Both the GAN and the
iterative predictor were trained for 5,000 epochs, with a batch size of 32 for each epoch. After each epoch,
the models were evaluated on the test set, and the results are reported down below.

5.5.1 Q-Value Reconstruction Error

Because the GAN outputs predictions in the latent space while the iterative model outputs predictions
in the original image space, it is difficult to compare the quality of the results from the two models. To
attempt to address this, this paper uses a novel metric to assess how useful the predictions are for decision
making. For each prediction, we obtain Q-value estimates from the state output by the prediction method.
We report the mean-squared error between the Q-value estimates given by the model on the prediction versus
the real observation. Intuitively, this is a measure of how similar the agent thinks the two states are from a
decision making standpoint. Two states that are functionally identical will have the same Q-values for each
action. Let G(πL(i)) be the (latent space) prediction given by the GAN after observation i and P (i) be the
prediction given by the iterative model. Let it+10 be the ground truth future state.

We then define the GAN loss :
∑

a∈A(s)

(
πA(G(πL(i)))− π(it+10)

)2

And the iterative predictor loss :

∑
a∈A(s)

(
π(P (i))− π(it+10)

)2

The results using this loss are examined in closer detail below.

Figure 4: Diagram of models. DQN shown on the left, divided in to πA and πL. In the center is the GAN,
with the preprocessing steps shown, courtesy of πL. On the right is a simple diagram of a single pass of hte
iterative model. The forward arrows indicate data flow in all models.
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6 Results, Analysis

6.1 MsPacman

Figure 5: Plot of the mean-squared error for MsPacman

As seen in figure 5, the GAN takes significantly longer to train than the default predictor model. In
fact, the iterative model appears to be reasonably well-trained after a single epoch, which is likely an artifact
of its architecture. Because the architecture for the iterative includes a bypass layer, it is very easy for the
model to learn an identity function and improve on that. For contrast, it takes the generative model a while
to even learn the identity function.

Nonetheless, both models outperform the baseline by orders of magnitude, which confirms that both
are valid models for this time span. However, one does have to note that it takes the generative model
significantly longer to converge than the iterative model. Regardless, both models seem effective for the
environment of MsPacman. This is a relatively easy environment to predict, as MsPacman tends to keep
moving in the direction she is facing, making linear prediction possible.

6.2 Breakout

Figure 6: Plot of the mean-squared error for Breakout

Looking at 6, there are a couple interesting things to note. The first is that both models spike in
error rate after about 20 epochs, which I do not have a strong explanation for. Additionally, it looks as
if the iterative model begins overfitting after 250 epochs, as its test error begins rising after that. When
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implemented side-by-side with a agent that is learning as the iterative model is, this wouldn’t be a problem,
as there would be effectively infinite data for the model to train off of.

One concerning element is that the GAN’s losses continues oscillating wildly. This likely indicates
nothing more than that the learning rate is too high, but it is certainly worth looking in to. As an environ-
ment, Breakout is moderately difficult to predict from a single frame. It’s impossible to infer which direction
the ball is going, which significantly harms prediction. However, the Q-values are likely similar when it is
going in either direction, as the correct move is to move towards the ball no matter what. The fact that the
loss function used in this project doesn’t distinguish between these scenarios is potentially a weakness of the
system.

6.3 Asteroids

Figure 7: Plot of the mean-squared error for Asteroids

The results for Asteroids are difficult to interpret. Because the asteroids move vertically at a slow
rate and the agent moves horizontally, there isn’t much of a difference between the current state and 10
timesteps from now. If the agent is currently under an asteroid, it wants to move to either side. Otherwise,
it likely has a very high value for its current state and all moves are roughly equal. As a result, the baseline
performs very well on this dataset, and is surprisingly difficult to beat. Only after it’s done training does
the GAN beat it. Similarly, the iterative model trains extremely quickly by learning little more than the
identity function.

6.4 Takeaways

In all of the examples shown, the generative model takes significantly longer to train than the iterative
approach. To some extent, this is to be expected, as the iterative approach easily learns the identity function.
Because 10 timesteps (approximately 0.25 seconds) is a short duration, the identity function is a pretty decent
predictor.

However, the GAN model does show that it has the capacity to perform at the same level as the iterative
model, which gives it credence as a model. It would be interesting to see whether or not the difference in
training times matters when the models are trained alongside an agent in real time. It is possible that the
GAN would learn fast enough to keep up, making the difference in training time negligible.

7 Conclusion

The GAN model proves to be a competitive approach to the existing state of the art prediction methods.
Although it takes longer to train, it provides similar accuracy on the test metric, and significantly outperforms
the trivial baseline (something that can unfortunately not always be taken for given in reinforcement learning
[26]).
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That said, there are numerous improvements that can be made to the current model. Optimally, the
model would train at the same time as the agent. For simplicity, this was not done in this realization of
the project. Additionally, the model needs to be tested on a larger scale with more complex environments
and a variety of timespans. More metrics will likely be useful for further analyzing the performance of these
methods.

Finally, there are a number of structural improvements that can be made. Wasserstein GANs typically
provide better performance than vanilla GANs [3][11] and there are other improvements that can be made
to improve the performance of DQNs ([12] [8]). This project presents an exciting and promising direction of
research, but there is still much more work to be done in understanding its capabilities!

References

[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Advances in Neural Information Processing Systems, pages 5048–5058, 2017.

[2] Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay. Face aging with conditional generative
adversarial networks. In 2017 IEEE International Conference on Image Processing (ICIP), pages 2089–
2093. IEEE, 2017.
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