
EE5239 Project Proposal

Carter Blum and Ashley Law

Fall 2020

1 Problem Formulation

Deep learning using stochastic gradient descent is a very common method for
solving both regression and classification tasks. In both settings, a task τ is
defined by a set of input data points {xi} and corresponding regression targets
{yi}. In machine learning settings, a task is split into training and test sets,
which we’ll denote as τ (r) and τ (s) respectively. The goal is to learn some θ that
parameterizes a function f such that

θ = arg min
θ

∑
i

Lτ

(
yi, f(xi; θ)

)
(1)

With low-bias models such as neural networks, this can require large amounts
of data to achieve competitive performance. This is not always feasible in real-
world settings, where data can be sparse and quick acquisition of new skills is
highly prioritized. Meta-learning seeks to alleviate these issues by learning a
joint model for a number of different but related tasks. Intuitively, this can be
thought of as learning reasonable biases for tasks in this domain. Somewhat
more formally, meta-learning can be written as trying to minimize the following
loss (although the term is fairly vague, so there are many formulations).

θ = arg min
θ

∑
i

E
xi,yi∼τ(s)

i

[
Lτi

(
yi, gi(xi)

)]
(2)

where
gi = f(τ

(r)
i , θ)

is usually assumed to be some model that is fine-tuned for τi using the re-
spective training data. Perhaps the most famous approach in this domain is
Model-Agnostic Meta-Learning[1] (MAML), which tries to learn good starting
parameters θ that allow for solid results after a limited number of steps. In the
formulation above, f would correspond to training (and returning) a model for

a number of steps on task τ
(r)
i , starting from parameters θ.

1



This problem is closely related to continuous learning, in which a model is
presented with data that is not i.i.d. This distributional shift often takes the
form of different tasks, trained one after another, and the primary difficulty is
finding a single model that is able to handle new tasks well while not experi-
encing catastrophic forgetting of old tasks.

2 Proposed Approach

As remarked in equation (1), all deep learning approaches attempt to minimize
model parameters θ. The primary contribution of this work is to propose de-
composing the θ into the product of a weight matrix θW (shared between all
tasks) and a (nearly) binary mask θM .

More specifically, we propose taking the θ above and reformulating it as

θ = θW � σ(θM ) (3)

where � is the Hadamard product (element-wise multiplication) and σ is the
element-wise sigmoid function, σ(s) = es

1+es . We note that this formulation does

not lose any expressivity, as setting θ
(ij)
W = θ(ij)

σ(θ
(ij)
M )

trivially results in recovering

any desired θ.

The intuition here is that θW learns an embedding from the input space to
some latent space of features that are useful for multiple tasks. However, not all
features are useful for all tasks, so it may be desirable to ignore some features
for some tasks. This is achieved via the binary mask, σ(θM ). For most values

of θ
(ij)
M , σ(θM )(ij) will be near either 0 or 1. This results in effectively allowing

θM to turn different elements of θW ‘on’ or ’off’ for each task.

One can compare this idea to the lottery ticket hypothesis [2], which showed
that, even in randomly initialized networks, there usually exist subnetworks that
are able to perform reasonably well on any given task. Any subnetwork of a
larger network is equivalent to a selectively masked version of the larger network
[6]. By this sequence of reasoning, even if θW is poorly optimized for any given
task, we can expect that there exists some mask defined by θM for which the
network defined by equation (3) performs well on that task.

2.1 Details

Given a set of tasks T , the proposed paradigm is as follows:

1. Randomly initialize θW

2. Randomly select τi ∈ T with uniform distribution

2



3. If τi has not been selected before, randomly initialize a new corresponding

θ
(i)
M

4. Train the network given by f(θ = θW � σ(θM )) with steepest gradient
descent for N steps

5. Save the updates to θW and θ
(i)
M

6. Repeat from (2)

Crucially, due to the nature of the back-propagation algorithm, one update

of θW and θ
(i)
M has the same time complexity as ordinary backpropagation of

θ. This is in contrast with other methods such as MAML [1], Meta-gradient
Reinforcement Learning [5], MetaGenRL [3] and others, which often require
computing the Hessian of the weights.

During test time, if the testing task has been seen before, the corresponding

mask weights θ
(i)
M can be looked up from training time. If the task has not been

seen before, it’s possible to use a linear combination of weights from existing
strategies, as is done in [4] for continual learning.

One notable difficulty is that the gradient ∇sσ(s) = (1 − σ(s))σ(s), gets
very small as σ(s) gets close to either 0 or 1. Ideally, we would like σ(s) to take
on values that are close enough to 0 & 1 to turn values on and off, but not so
small as to make the gradient near zero, since that would result in very slow
convergence. Luckily, this issue is largely rectified by adding an L2 regularizer
to the weights of θW , which encourages the weights to take on small values.
Because the gradient of σ is greatest at s = 0, this encourages the weights to
stay roughly in the zone where the gradient flows nicely. One possible source
of difficulty is that this may cause the values of σ(s) to stay around 0.5, which
minimizes the regularizer, so it is important to make sure that the weight of the
regularizer is tuned correctly.

3 Experiments

3.1 Proof of Concept: Linear Regression

This experiment checks the situation where a linear model of the form y =
(wW � wM )Tx + (bW � bM ) is correct and attempts to see if our method can
find it. Namely, we test linear regression on 5 variables for each task. For each
task, the weight of the kth variable is either wk or 0, as is the bias, where wk
are shared between all tasks. In this scenario, our proposed model is perfectly
capture the dynamics of the system, so it works as a simple debugging example
and proof-of-concept.

3



3.2 Simple Generalization: Linear Regression with Sinu-
soidal Output

In this experiment, the data takes the form y = sine
(

(wW�wM )Tx+(bW�bM )
)

.

As in the above experiment, w and b vary from task to task according to the
previously described rules. This should require a 2+ layer network, where the
optimal values for the first layer are the same as the optimal values from the
proof of concept, and the optimal values for the later layers are shared between
all tasks. This test should demonstrate whether or not the method is able to
identify when all weights of a layer should be shared between all functions.

3.3 Sinusoidal Regression without Linear Assumption

In this experiment, each task consists of learning linear regression on a sinusoidal
function given by sine(wTx + b1) + b2. Unlike the previous task, there is no
relation between the values of w, b1 and b2 from one task to another. This
experiment is intended to demonstrate whether or not the method is able to
learn dynamic-valued weights.

3.4 Sinusoidal Regression with Occasional Cosine Replace-
ment

This experiment is another proof of concept. It is the same as the previous
experiment (3.3), except that sine is occasionally replaced with cos, which is
equivalent to sometimes adding a bias of π2 . If the model is successful, we should
see the bias term take on a value of π

2 in the cos cases, with the corresponding
mask being nearly 0 or 1 for each task.

3.5 Logistic Regression

In this experiment, logistic regression is attempted, with the same assumptions
as the first experiment (3.1). This is to test whether the method is compatible
with classification as well as regression, which it theoretically should be.

3.6 Image Classification - MNIST

In this experiment, a convolutional neural network (CNN) is used to classify
black & white images of digits, as used in class. For this particular exam-
ple, there is no meta-learning component; it is simply to examine whether our
method performs similarly to a baseline CNN.

3.7 Image Classification - Colored MNIST

This experiment is the same as MNIST, except that there are now a number of
tasks that each take the black background in the MNIST digits and replace it

4



with a background of a random color. The intent of this experiment is to test
whether the algorithm is able to scale to non-trivial domains.

References

[1] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic
meta-learning for fast adaptation of deep networks. arXiv preprint
arXiv:1703.03400, 2017.

[2] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Find-
ing sparse, trainable neural networks. arXiv preprint arXiv:1803.03635,
2018.

[3] Louis Kirsch, Sjoerd van Steenkiste, and Jürgen Schmidhuber. Improving
generalization in meta reinforcement learning using learned objectives. arXiv
preprint arXiv:1910.04098, 2019.

[4] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi,
Mohammad Rastegari, Jason Yosinski, and Ali Farhadi. Supermasks in
superposition. arXiv preprint arXiv:2006.14769, 2020.

[5] Zhongwen Xu, Hado P van Hasselt, and David Silver. Meta-gradient rein-
forcement learning. In Advances in neural information processing systems,
pages 2396–2407, 2018.

[6] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing
lottery tickets: Zeros, signs, and the supermask. In Advances in Neural
Information Processing Systems, pages 3597–3607, 2019.

5


