SMART Goals : Algorithm

March 2020

1 Base Algorithm

Algorithm 1 Core execution loop

procedure SMART_PLAN(s, ¢)
if IS.TRIVIAL(s, ¢) then return TRIVIAL_ EXECUTE(s, ¢)

® = GENERATE_OPTIONS(s, ¢)
¢ = SELECT_OPTION(®, s, ¢)
71, $ = SMART_PLAN(s, ¢')

75, s = SMART_PLAN(s, ¢)
return {r||m2}, s

Where the variables are defined as follows:

e s €5 : The representation of the state, should be vector

e ¢, ¢’ : Representations of the objective, should be a vector
e ®: set of objectives

e 7,79 : Trajectories, returned for usage in memory later

Given this algorithm, we obviously have 4 fairly major holes that we need
to fill in: the definitions of our four functions. Not shown here, we also need
a distance function between states and goals In plain English terms, we would
like them to do the following:

e IS_ TRIVIAL : Should be simple and predictable, just serving as a base
case for the function. Some possibilities include:

Recursion depth (would need to pass as argument)

If distance between state and goal is less than some threshold

If goal node is less than some distance from an adjacent node

Some learned function

e TRIVIAL_EXECUTE : Again, intended to be simple. Preferably has the
ability to early exit, which would allow us to have kinda’ a cascade of
early exits. Would strongly prefer that this portion remains as static as
possible, to simplify problem. Some possibilities are listed below.

e GENERATE_OPTIONS : Some function that generates options from the
space of all possible goals. If tractable, could literally return all of the
possible states. In practice, will need to return some subset of all possible
goals. In the current formulation, this takes the form of N sample draws
from some distribution conditioned on the current state and the goal.
Under this formulation, it would ideally like to generate goals that are
more likely to have been selected if all goals were possible.

e SELECT_OPTION : Some function that maps from a list of goals to a
single goal. For end-to-end differentiability, I think that making this prob-
abilistic makes a lot of sense.

I would like to keep IS_.TRIVIAL and TRIVIAL_EXECUTE as simple as
possible. For brevity of notation, we’ll choose some function for IS TRIVIAL,
T(s,¢) => [0,1], giving the probability that reaching a goal from a given state
is trivial. Note that we only ever will need to compute whether or not reach-
ing a goal from a given state is trivial, we will never actually need to evaluate
two goals. We’ll write TRIVIAL_EXECUTE as 7, because it looks vaguely
like an E for Execute. We'll define a generator G(s, ¢), and currently assume
that SELECT_OBJECTIVE simply returns NV i.i.d. samples from a list. Ad-
ditionally, we’ll make a simplifying assumption that our goal selection policy is

_ exp(AV(¢',¢,5) :
q(¢', 0,5, ®) = S e DOV (G) for some hyperparameter A\. Obviously,

as A — oo, this approaches a hard policy, but I think a soft policy is better
for a couple of reasons. First, it provides gradients for more samples from the
generator (as opposed to only the selected sample)

I do want to briefly say that I'm not sure that this is the best way to
set up the problem, just probably the most dumb and simple. I could very
easily see a formulation that uses variational inference or Metropolis-Hastings
to try to approximate some joint distribution 7y ©® G, and try to learn this
joint distribution to maximize our expected reward. Another interesting way to
view this could be to use actor critic methods. In this scenario, the generator
generates a single goal, which is chosen with 100% probability, and the function
is trained with standard policy gradient methods. I'm writing down the below
method simply because I think it’s the simplest and (probably) the easiest to get
working and understand, although I think that the other 2 methods probably
have a little bit better of a theoretical foundation.

Anyways, with these definitions given, I'll try to provide some useful loss
functions. The first is the generator loss, which vaguely resembles a generative
adversarial network. Following that inspiration, we assume the generator to be
of the form G(x, s, ¢), where * is a vector of normally distributed random noise.

The loss for the generative network is given as

LG(¢757¢)) = - Z 7TG(¢*7¢757¢))V(¢*7¢75) (1)

¢ D

And, naturally, the full loss is given

Lg = Eswps,d)wp(;,,* N(0,I) [LG(¢7 S, {G(*l)v) G(*N)}] (2)

Where p, and py are the discounted visitation probability of states and the
probability of goals. I was able to check out that all of these converge in the
non-recursive case, but I'm having some difficulties proving it in the recursive
case. You could use any number of loss functions for V', but I think the thing
that seems the simplest is to just use the pathwise sum of rewards.

V(¢*a (ba 8) = ES’~p¢(S,¢*) [V(¢*7 S) + V(¢7 S/)] (3)

Where py(s,¢*) is the discounted terminal state frequency of 7 given current
state s and goal ¢*. With the slight bit of abuse of notation that

V(¢,s) =T(¢,8)Ve(@,5) + (1 = T(¢,5)) Egrum,0a[V (¢, ¢,)] (4)

Where V, is the expected (discounted) reward for executing 7, with parameters
¢, s. In short, this is is simply the expected reward from setting out to go to
¢* from s, then the expected reward of going from wherever we actually ended
up (discounted by time) to our second goal. While searching for difficulties in
this, I was able to come up with a couple of potential places where this doesn’t
converge. First, assume that, for some ¢, s, T'(¢, s) | 0.5. Assume that our goal
function is devolved and is deterministic, such that our goal is always the same
¢* given this state and this goal. Finally, assume that, for whatever reason,
executing Ve (¢, s) always leaves us back where we started at s. In this case, our
function boils down to V (¢, s) = T(¢, $)Ve(¢, s)+(1=T(¢, s))[V (¢, s)+V (¢, 5],
which clearly diverges.

One simple fix I came up with was a penalization term for not reaching our
goals - we adjust the first equation to be

V(¢*a ¢a 8) = E5’~p¢(s,¢*) [V(¢*7 S) + V(qu S/) - V(¢*7 S/)] (5)

This has a couple of benefits. First, it causes the equation to converge in the
aforementioned scenario. Second, it forces our goal to be more than just a
message passing mechanism, because we are penalized for our ‘distance’ to the
goal, which is nice for interpretability. And finally, it potentially provides more
data for us to learn from per observation, although this may be a small benefit.

Regarding how to learn 7, the simplest method (to me), would be to have
some model of the world (either hard-coded or learned via unsupervised learn-
ing), and simply select the option that has the least expected distance from the
goal. Alternately, you could probably learn how to achieve arbitrary goals in
an unsupervised setting as well. From the literature that I've read thus far, it

seems like the most common choice for termination function is simply recursion
depth, and that seems like a reasonable place to start, if not a reasonable place
to end. In some problems, we may be able to get away with literally using state
adjacency as our criterion.

