
Time Series Shapelet Classification
through Learned Distances

Anonymous Submission
DM579

Abstract—Shapelets are small subsequences of time series
that can be used to classify unlabeled time series. Shapelets
can be used in stand-alone classifiers and are an essential
part of the most accurate ensemble methods for time series
classification. Previous shapelet research has focused on finding
the most efficient approaches to discover shapelets and how
to incorporate shapelets into different classification methods.
However, a shapelet’s ability to accurately classify depends on a
single measurement: its distance from each sample. Euclidean
distance, while robust, is the only distance metric that has
been used with shapelets. This paper explores an alternative
to Euclidean distance. First, given a shapelet, we introduce a
unique mapping that uses the shapelet to project time series
training samples into Euclidean point space. In this space, we
show that the current approach of using a fixed Euclidean
distance threshold for shapelet classification is equivalent to
creating a spherical decision boundary. We then use logistic
regression in this Euclidean space to learn a decision boundary
that can more accurately capture the structure of the data. This
approach can improve the classification power of the shapelet by
providing better separation between samples of different classes.
We compare the performance of decision boundaries created
by Euclidean distance and logistic regression using 2 shapelet
methods on 30 publicly available datasets. Due to its simplicity,
Euclidean distance tends to perform better than logistic regres-
sion when very few training samples are available. However, when
given a sufficient number of training samples, results show that
decision boundaries learned by logistic regression outperform
fixed Euclidean distances. Finally, we show it is possible to predict
whether Euclidean distance or logistic regression will perform
better using only training data.

Index Terms—pattern analysis, supervised learning, time series
classification

I. INTRODUCTION

Time series classification has numerous applications to a
wide variety of domains. For example, classification of ECG
signals can identify when a patient is suffering from congestive
heart failure so emergency medical personnel can be notified
to provide life-saving medical treatment [1]. Classification
in food spectroscopy can improve food safety and quality
assurance. For instance, infrared spectra of beef that has been
cut, ground, cooked, or is uncooked can identify whether it is
pure or contains adulterations [2]. Finally, in the power grid,
classification of electrical disturbance events can enable an au-
tomated relay to apply corrections faster than a human possibly
could, preventing cascading blackouts before they occur [3].
Additional application domains include finance, entertainment,
medicine, biometrics, human motion, chemistry, astronomy,
robotics, entomology, and wildlife management [4]–[7]. Many
other problems can also be mapped to time series [8].

The most studied time series classification methods are
global, meaning they compare one entire time series to another.
Well known global methods such as 1-Nearest Neighbor and
Dynamic Time Warping [9] have been used extensively, but
global classification methods suffer from three limitations.
First, since global methods compute distances using entire
time series, they are computationally costly both in space and
time complexity. Second, they are sensitive to noise throughout
an entire signal. Third, the classification results are not inter-
pretable because they do not detail why an unlabeled object
is assigned to a given class. Time series shapelets overcome
these limitations by performing classification locally.

A shapelet [8] is a short segment of a time series that
represents a highly discriminative feature and can be used for
fast, accurate classification. Due to their short length, shapelets
are robust to background noise, have faster computation, and
provide intuition on the classification of unlabeled samples.

Shapelets can be used in stand-alone classification algo-
rithms including decision trees [8], [10], [11], support vector
machines, and Bayesian networks [12], [13], and are integral
parts in the most accurate time series classification ensembles
[14]. However, a shapelet’s ability to distinguish between
samples rests solely on its distance from each sample. Despite
this dependency, Euclidean distance is the only metric that has
been utilized during shapelet discovery and classification.

Contributions: This paper explores the impact of learn-
ing a custom distance instead of using Euclidean distance
for shapelet classification. We start by introducing a novel
mapping scheme to transform time series training samples
into points in Euclidean space based on the shapelet used for
classification. We show that in this space, a Euclidean distance
threshold equates a spherical decision boundary. This spherical
boundary can fail to capture the structure of the training data
since the distribution of samples is rarely uniform, leading
to incorrect classifications. Next, we apply logistic regression
to the mapped training samples in this Euclidean space. The
output from logistic regression is used in two ways.

First, for classification approaches that use shapelets in deci-
sion trees, the decision boundary learned by logistic regression
can be used in place of a fixed Euclidean distance cutoff.
The boundary learned by logistic regression has the ability to
more effectively model sample distributions, leading to more
accurate classification given sufficient samples.

Second, for shapelet classification methods that use multi-
ple shapelets with multiple distances, we replace Euclidean
distance with the probability distributions learned for each

shapelet by logistic regression, effectively treating these dis-
tributions as custom-learned distances for each shapelet.

Results on 30 publicly available datasets show that Eu-
clidean distance tends to perform better with few training
samples, since only a single parameter is learned. However,
when given 100 training samples or more, shapelets using
a decision boundary learned through logistic regression tend
perform better than a fixed Euclidean distance threshold.
Furthermore, when sufficient training samples are available,
we show the impact of each decision boundary is largely
predictable using cross-validated training data.

II. RELATED WORK

Time series shapelets require two separate steps: shapelet
discovery and shapelet classification. Shapelet discovery gen-
erates shapelet candidates and evaluates them to determine the
best shapelets for a given dataset. Classification then combines
these shapelets into a classification algorithm.

There are two different approaches to shapelet discovery:
searching for shapelets and learning shapelets. The original
approach proposed by [8] is search-based and uses brute force
to explore all possible subsequences of all training samples.
Speedups to this brute force exploration include subsequence
distance early abandon and admissible entropy pruning [8],
multi-length indexing and dynamic stepping [15], removal of
duplicate shapelets through clustering [12], and mapping time
series to SAX words to compress the search space [10].

Alternatively, shapelet discovery can be formulated as an
optimization problem. The best shapelets can then be learned
through heuristic gradient descent [16] or generalized eigen-
vectors combined with the fused lasso regularizer (FLAG)
[17]. The problem can also be formulated as a convex op-
timization [18].

Once shapelets are discovered, they can be used in a variety
of classification schemes. The original approach [8] used the
best shapelet found with a computed distance threshold to
build a decision node, which can be executed recursively to
build a decision tree. Shapelets can also be combined using
logical AND and OR conjunctions [11]. Linear regression can
be used to separate samples based on their distances from two
shapelets [16]. Finally, Shapelet Transforms [12], [13] provide
a transformation method to feed data from multiple shapelets
into a machine learning ensemble consisting of C4.5 trees,
random forests, rotational forests, Bayesian networks, nearest
neighbor, support vector machines, and naı̈ve Bayes.

III. DEFINITIONS AND NOTATION

We start with the necessary notation to represent time series,
shapelets, and distances, summarized in Table I.

Time Series: A time series T = t1, t2, ..., tL is an or-
dered set of points in R. A time series subsequence Si =
ti, ti+1, ..., ti+l−1 is a contiguous subsequence of points in T
of length |Si| = l.

Learning Environment: We assume a supervised training
environment consisting of dedicated training and test datasets.
The training dataset, Ttrain = {T1, T2, ..., Tn}, is a set of time

Shapelet Variable Definitions
Datasets, Samples, and Class Labels

Variable Explanation
Ttrain Training dataset of time series samples
Ttest Test dataset of time series samples
Ctrain, Ctest The vectors of class labels for each dataset
Ti The ith sample in a dataset
C Number of classes in the datasets
ci The class label for the ith sample
n Number of samples in a dataset
L Length of each time series in the datasets

Shapelet Discovery/Classification
Variable Explanation
Shcand A shapelet candidate
l Length of a shapelet or shapelet candidate
Dist() Distance function used for classification
I(D) Entropy, measures the diversity of a dataset
d Distance threshold, partitions the training dataset
Gain(Shcand) Gain, measures the quality of a candidate
Sh A shapelet, chosen for classification
j The offset denoting the best fit for a shapelet Sh

to a sample Ti

TABLE I: Shapelet Terminology

series. Ctrain denotes the list of class labels. Each time series
Ti has a class label ci ∈ {1, ..., C}, where C is the number
of classes. A test dataset, Ttest, is similarly formatted with
different samples, but the associated class labels Ctest are hid-
den during testing and used only for performance evaluation.
While the scope of this paper is limited to supervised learning
in one-dimensional time series, this can be easily expanded
to use shapelets in multiple dimensions [15], [18] or in an
unsupervised setting [19].

Shapelet Candidate: A shapelet candidate Shcand =
sh1, sh2, ..., shl is a short time series of length l that is evalu-
ated as a possible shapelet during shapelet discovery. Typically
l << L, where L is the length of the time series in the training
dataset, Ttrain. Most discovery methods are search-based,
meaning they search for shapelets in subsequences of time
series samples in the training dataset [8], [10]–[13]. For these
methods, any subsequence in any training sample is a shapelet
candidate. However, learning-based methods are not restricted
to subsequences in the training dataset [16]–[18]. For these
methods, any time series of length l is a shapelet candidate,
meaning they cover an infinite number of candidates.

Distance: Given a time series sample Ti and a shapelet
candidate Shcand, the distance between them is defined by a
distance function, abbreviated as Dist(Ti, Shcand). Since the
time series is longer than the shapelet candidate, the best fit
distance is used, shown in Figure 1a and defined as follows.

The closest subsequence, Sclosest, of Ti to Shcand is the
contiguous subsequence S ∈ Ti, s.t.|S| = |Shcand|, which
minimizes Dist(S, Shcand) out of all S ∈ Ti. This best fit dis-
tance, Dist(Sclosest, Shcand), is used as the distance between
the time series Ti and the shapelet candidate Shcand (i.e.
Dist(Ti, Shcand) ≡ Dist(Sclosest, Shcand). While Dist()
could be any distance function, point-wise Euclidean distance

(a) For a single sample (blue), there are mul-
tiple possible alignments for a shapelet (red).
Shapelets only use the best fitting alignment.

(b) Each point in the closest subsequence
from the best fit is treated as a dimension,
mapping the subsequence to a point in Rl.

(c) This shapelet has length l = 49, so the
Euclidean space has 49 dimensions. Here 3
dimensions of the Euclidean space are shown.

(d) There are 50 samples in this training
dataset, 4 of which are shown above. Using
the closest alignment for each sample, ...

(e) ... the entire training dataset is mapped to
Euclidean space Rl. The mapped points from
all 50 training samples are shown here.

(f) Finally, since this space is sparse, PCA
is used to reduce the number of dimensions.
Classification is now performed in this space.

Fig. 1: A proposed method to map time series samples to Euclidean points using a shapelet previously discovered for the
GunPoint dataset. Each sample is mapped to a point ∈ Rl using the sample’s closest subsequence to the shapelet.

is the only distance metric that has been used with shapelets.
Binary Partition: Using a distance threshold d, a shapelet

candidate Shcand creates a binary partition of the train-
ing dataset Ttrain into two smaller datasets, Ttrain L and
Ttrain R. Ttrain L contains samples within the distance d of
the shapelet candidate, and Ttrain R contains samples that
exceed the distance d. d is always the distance that results
in the optimal information gain, defined in Equation 1, and
can be found algorithmically, as in [8].

Gain(Shcand) = I(Ttrain)− |Ttrain L|
|Ttrain|

I(Ttrain L)

− |Ttrain R|
|Ttrain|

I(Ttrain R)

(1)

Entropy: Entropy measures the diversity of the class la-
bels for a given dataset D, and is computed as I(D) =∑C

i=1−pilog(pi). Here pi = ni

n is the proportion of samples
ni to the total samples in the dataset n = |D| for class i.

Information Gain: Information gain is the standard metric
used to measure the quality of shapelets based on how they
partition the training dataset [8]. Given a shapelet candidate

Shcand for the training dataset Ttrain, the gain is defined
in Equation 1 as the reduction in entropy after the dataset
is partitioned by the shapelet with its distance threshold
d. Shapelet candidates that cleanly separate samples from
different classes have high information gain.

Shapelet: A shapelet is a shapelet candidate chosen by
an algorithm for classification based on its information gain.
Depending on the classification method, the top k shapelets
with the highest gain are chosen. Shapelet candidates can be
clustered after they are evaluated so that multiple shapelets
that are nearly identical are not chosen [12].

We detail how methods build shapelets into classifiers in
Section V. First, we introduce an approach to learn a custom
distance for each shapelet in the next section.

IV. TRANSFORMING EUCLIDEAN SPACE
THROUGH LOGISTIC REGRESSION

Euclidean distance is the only metric that has been used
with shapelets. This section introduces an approach to view
shapelets and samples from the training dataset in Euclidean
point space instead of as time series. Instead of computing

Algorithm 1: Learning Distance with Logistic Regression
Input: Training Dataset Ttrain =[T1, ..., Tn],

Training Class Labels Ctrain = [c1, ..., cn],
Shapelet Sh = sh1, sh2, ..., shl,
PCA Minimum Variance Explained Threshold ν

Output: PCA Coefficients PCAcoeff ,
Parameter Coefficients Θ = [Θ0,Θ1, ...Θ2m+1]

/* First, for each sample, map the closest
subsequence to the shapelet to a point
in Euclidean Space Rl. */

1 Emap = {}
2 for i = 1 to n = |Ttrain| do
3 fSh : Ti 7→<tj , tj+1, ..., tj+l−1>
4 Emap[i] =<tj , tj+1, ..., tj+l−1>

/* Next, reduce the dimensions of the point
space using PCA so that at least ν% of
the variance is explained. */

5 PCAcoeff = PCA(Emap, ν)
6 Epca = Emap x PCAcoeff

/* Use a quadratic, axis-aligned decision
function. */

7 X = [x0 + x1 + x2
1 + x2 + x2

2 + ...+ xm + x2
m]

/* Solve for parameter coefficients and
return. */

8 Θ = arg min
Θ

J(Θ|Epca,Ctrain)

9 Return Θ, PCAcoeff

a fixed Euclidean cutoff distance, this will enable custom
distances to be learned for each shapelet.

A. Mapping Time Series to Euclidean Points

Suppose a shapelet has already been discovered for training
dataset Ttrain. Instead of viewing every training sample as
a time series, we project each training sample into an l-
dimensional Euclidean space, where l is the length of the
shapelet. This projection will allow more complex classifi-
cation methods to be used in place of Euclidean distance,
described in Section IV-C. The projection is explained below.

For a shapelet Sh = sh1, ..., shl of length l and a sample
Ti = t1, ..., tL of length L, there are L − l + 1 possible
alignments to compute the distance between them. In other
words, there are L−l+1 contiguous subsequences from sample
Ti that are compared to the shapelet. The first subsequence is
t1, t2, ..., tl. The second subsequence is t2, t3, ...tl+1, and so
on, with the last subsequence being tL−l+1, tL−l+2, ...tL as
shown in Figure 1a.

Instead of viewing each of these subsequences as time
series, the subsequences compared to the shapelet can be
viewed as points {< t1, t2, ..., tl >, < t2, t3, ...tl+1 >, ...,
<tL−l+1, tL−l+2, ...tL>} in the Euclidean space Rl. How-
ever, only one of these subsequences determines the best fit
distance. We therefore ignore all subsequences of Ti except
the one that is closest to the shapelet (Figure 1b). Suppose the
offset of the closest subsequence is j. The closest subsequence

Algorithm 2: Classifying Samples with Learned Distance
Input: Test Dataset Ttest =[T1, ..., Tn],

Shapelet Sh = sh1, sh2, ..., shl,
PCA Coefficients PCAcoeff ,
Parameter Coefficients Θ = [Θ0,Θ1, ...Θ2m+1]

Output: Hypothesis Vector H = [h1, h2, ..., hn]
/* Map each sample to Rl using its closest

subsequence to Sh. */

1 Emap = {}
2 for i = 1 to n = |Ttest| do
3 fSh : Ti 7→<tj , tj+1, ..., tj+m−1>
4 Emap[i] =<tj , tj+1, ..., tj+m−1>

/* Next, reduce dimensions through PCA from
the training dataset. */

5 Epca = Emap x PCAcoeff

/* Finally, compute hypotheses using
logistic regression learned on the
shapelet and training data. */

6 for i = 1 to n = |TTest| do
7 <p1, p2, ..., pm>= Epca[i]
8 X = [1 + p1 + p2

1 + p2 + p2
2 + ...+ pm + p2

m]

9 H(i) = (1 + e−ΘTX)−1

10 Return H

is written as tj , tj+1, ..., tj+l−1, and we map the time series
Ti to a single point<tj , tj+1, ..., tj+l−1>.

More formally, given a shapelet Sh = sh1, sh2, ..., shl and
a sample Ti = t1, t2, ..., tL whose closest subsequence to the
shapelet is tj , tj+1, ..., tj+l−1, the function fSh maps the time
series Ti to the point<tj , tj+1, ..., tj+l−1> as in Equation 2.

fSh : Ti 7→ <tj , tj+1, ..., tj+l−1> ∈ Rl (2)

Algorithm 1 describes this mapping scheme, and Figures 1b
and 1c show an example using a shapelet of length 49 from
the GunPoint dataset. Only 3 dimensions are shown, since the
resulting Euclidean space has 49 dimensions, making fully
viewing the Euclidean space impossible. Using fSh to map
Ttrain = {T1, ..., Tn} produces n points in Rl, each of which
has its own class label in Ctrain, as shown in Figures 1d
and 1e. We next use this mapping scheme to illustrate the
limitations of computing a fixed Euclidean distance threshold.

B. Viewing a Euclidean Distance Threshold in Rm

As mentioned in Section III, a shapelet is evaluated by
information gain, which is the reduction in entropy after it
performs a binary partition on the dataset. This partition is
always determined by the optimal split point. In the projected
Euclidean space shown in Figure 1e, partitioning using a
the split distance d is mathematically equivalent to creating
spherical decision boundary centered around the shapelet. This
sphere is of the form d2 =

∑l
i=1(xi − shi)2 where the only

parameter learned is d, the radius of the sphere. A projected
sample inside the sphere is classified as class 1, while a sample
outside of it is classified as class 2. Figure 2 shows this

(a) Euclidean points from shapelet 1 (b) Euclidean distance threshold (standard) (c) Logistic Regression threshold (proposed)

(d) Euclidean points from shapelet 2 (e) Euclidean distance threshold (standard) (f) Logistic Regression threshold (proposed)

(g) Euclidean points from shapelet 3 (h) Euclidean distance threshold (standard) (i) Logistic Regression threshold (proposed)

Fig. 2: Supervised learning of time series samples mapped to Euclidean space. The left-most images (a,d,g) each contain a
shapelet (red) and closest subsequences for samples from class 1 (blue) and class 2 (green) mapped to Rm Euclidean space.
PCA has been used to reduce the number of dimensions to 2 for visualization purposes. In this space, finding the optimal
split distance for a shapelet is mathematically equivalent to having a spherical decision boundary centered around the shapelet,
shown in the middle figures (b,e,h). The right-most images (c,f,i) show an elliptical boundary learned by logistic regression.
Shapelets 1 and 2 in (a - f) are from the GunPoint dataset, while shapelet 3 in (g - i) is from BirdChicken.

boundary using 3 different shapelets. However, the training
points in this space are rarely spherical in nature.

In the next section we propose an alternate decision bound-
ary that is learned for each shapelet through logistic regression.

C. Learning a New Decision Boundary

Logistic regression classifies samples using the sigmoid
hypothesis function h(Θ, X(i)) = (1 + e−ΘTX(i)

)−1 where
X(i) is a list of features for sample Ti and Θ is a vector
of parameter weights for each feature. This function assigns

to any point a probability that it has the same class label as
the sample containing the shapelet. Assume, without loss of
generality, that the sample containing the shapelet is from class
1. In binary classification, logistic regression uses a decision
boundary at the threshold h(Θ, X(i)) = 0.5. If a sample
creates a hypothesis h(Θ, X(i)) ≤ 0.5, it is classified as class
1; otherwise it is classified as class 2 as shown in Figure 3.

The set of parameters Θ is learned according to the convex
cost function in Equation 3 for J(Θ) below. Algorithm 1
describes the learning process.

Fig. 3: Shapelet classification using a decision node. Standard practice finds the Euclidean distance that provides the optimal
gain. This distance threshold d is then used to classify unlabeled samples (left). Instead, our proposed approach (right) uses
logistic regression to learn a hypothesis function, providing a more complex boundary to model sample distributions.

J(Θ) = − 1

n

n∑
i=1

[cilog(h(Θ, X(i))) +

(1− ci)log(1− h(Θ, X(i)))]

(3)

Logistic regression could be used in the l-dimensional
shapelet Euclidean space to separate samples instead of using
a fixed Euclidean cutoff. However, since there are only n
training samples in l dimensional space, this space can be
very empty and contain excessive dimensions. As such, prior
to performing logistic regression, we use PCA to reduce the
number of dimensions while retaining at least ν% of the data.
The results described below were obtained using ν = 99%,
which can significantly reduce overfitting of logistic regression
without losing much of the data variance.

Instead of a sphere centered around the shapelet, we can
learn a more flexible axis-aligned quadratic decision boundary
of the form X = [x0, x1, x

2
1, x2, x

2
2, ..., xm, x

2
m] with param-

eters Θ = [Θ0,Θ1, ...Θ2m+1], where m is the number of
dimensions left after PCA.

We choose an axis-aligned decision boundary for two
reasons. First, the decision to keep the quadratic function
axis-aligned reduces overfitting by limiting the number of
parameters that logistic regression must learn. Second, unlike
a linear model, a quadratic equation has the ability to capture a
cluster of points from class 1. This may not always be centered
around the shapelet, but this structure can be captured by the
X and Θ designated above.

Once training is complete, and unlabeled time series sample
is mapped to the same Euclidean space and classified accord-
ing to its hypothesis value, as described in Algorithm 2.

Mapping and Logistic Regression Variable Definitions
Mapping Time Series to Euclidean points

Variable Explanation
fSh Maps time series samples to points in Rl

using the closest subsequences to the shapelet Sh
Emap The set of Euclidean points resulting from using

fSh to map all samples in Ttrain

PCA() Principal Component Analysis;
Reduces the number of dimensions of Emap

ν Cutoff for minimum PCA percent explained
PCAcoeff Coefficient matrix produced by PCA
m The number of dimensions needed

to explain ν% of the variance in Emap

Epca Euclidean points in PCA-reduced space
Computed by Emap x PCAcoeff

Logistic Regression
Variable Explanation
X List of features using the dimensions of Epca

Θ Parameter coefficients for X
J Cost function used to learn Θ using Epca

H The hypothesis vector for the test samples

TABLE II: Logistic Regression Terminology

V. EXPERIMENTAL SETUP

We use 2 different shapelet discovery and classification
methods to compare classification accuracy using Euclidean
distance versus accuracy with a learned distance. The first
method, Fast Shapelets, is a search-based discovery method
that uses decision trees for classification. The second method,
FLAG, is a learning-based discovery method paired with SVM
for classification. Performance for both of these methods is
compared using multiple datasets from the UCR/UEA archive.

A. Fast Shapelets

Fast Shapelets [10], is a brute force search-based shapelet
discovery method. Prior to discovery, Fast Shapelets first
uses SAX word mapping [20], [21] to compress time series
training samples. Fast Shapelets then finds the top k shapelets
in the SAX space, maps them back to their original time
series, and chooses the best shapelet using information gain.
This approach makes Fast Shapelets the fastest search-based
shapelet discovery method available. For classification, Fast
Shapelets builds a decision node consisting of the discovered
shapelet and its Euclidean cutoff distance. This process is
executed recursively to build a decision tree for classification.

Decision trees are well known to propagate classification
errors to successive levels of the tree. To avoid this error
propagation, we focus only on the root node’s shapelet, which
is the single best shapelet found by Fast Shapelets using the
entire training dataset. Figure 3 illustrates this comparison.

B. Fused LAsso Generalized eigenvectors (FLAG)

Fused LAsso Generalized eigenvectors (FLAG) is signifi-
cantly different from Fast Shapelets since it frames shapelet
discovery as an optimization problem and then learns the
best shapelets. Its combination of the Generalized Eigenvector
Method (GEM) [22] with a Fused Lasso regularizer [23] en-
courages a sparse, blocky solution and makes FLAG scalable.
FLAG has reported runtimes that are faster than Fast Shapelets.
It also has higher reported accuracy than Fast Shapelets since
it learns k shapelets simultaneously and creates a Shapelet
Transform [12] which is input into a support vector machine
(SVM) for classification [17] as in Table III.

C. UCR/UAE Time Series Archive

As a testbed, we use the diverse and well-cited UCR/UAE
data archive1,2 [24], [25]. While this archive contains many
datasets, we focus our results on the 30 datasets containing
2 classes to compare the impact of logistic regression versus
Euclidean distance on individual shapelets. These 30 datasets
were produced by 6 different authors and are from dozens of
different domains. Each dataset has disjoint training and test
datasets, with the training dataset containing between 20 to
1800 training samples. The length of each time series ranges
from as few as 24 data points to over 600, but the lengths of
all time series for a single dataset are the same.

VI. RESULTS

A. Fast Shapelets

Tables IV and V show the results by dataset for using
logistic regression versus the standard Euclidean decision
threshold. Each entry is the average accuracy for 30 runs of
Fast Shapelets using the single-best shapelet found. Table IV
contains all of the UCR 2-class datasets with 100 or more
training samples, while Table V has the 2-class datasets with
less than 100 training samples. Results that were statistically

1http://www.cs.ucr.edu/∼eamonn/time series data
2http://timeseriesclassification.com/dataset.php

Euclidean Distance Logistic Regression
Shapelet Transform Shapelet Transform

T1 ... Tn T1 ... Tn
Sh1 7.23 ... 2.15 Sh1 0.17 ... 0.15
Sh2 1.52 ... 3.58 Sh2 0.62 ... 0.86

...
...

. . .
...

...
...

. . .
...

Shk 6.88 · · · 3.23 Shk 0.12 · · · 0.04

TABLE III: An example of Shapelet Transforms used by
FLAG. The standard practice is to use Euclidean distance
∈ R+(left). Instead, the hypotheses probabilities ∈ [0, 1]
produced by logistic regression can be used as a learned
distance (right).

better with a p-value of p ≤ 0.05 are shown in bold. Datasets
with no bolded values had no statistically significant difference
between the two methods.

For datasets containing 100 or more training samples in
Table IV, logistic regression provided statistically better per-
formance in 8 of the 13 datasets. Results from two of the
datasets, Computers and Ham, were not statistically different.
Euclidean distance was statistically better on 3 of the datasets,
with small improvements on two datasets and a large improve-
ment of 10.5% on Wafer. Overall, logistic regression increased
accuracy an average of 3.8% across all datasets with 100 or
more samples.

For datasets with less than 100 samples, Euclidean distance
tended to perform slightly better than logistic regression as
Table V shows. Of these 17 datasets, Euclidean distance
performed statistically better on 8, logistic regression was sta-
tistically better on 4 datasets, and 5 datasets had no statistical
difference. Compared to Euclidean distance, logistic regression
decreased accuracy an average of 1.2% across all 17 datasets
with under 100 samples.

The number of training samples influences which approach
provides higher accuracy since logistic regression learns mul-
tiple parameters for its decision boundary while Euclidean
distance learns only one. However, four additional factors
impact the performance of each method.

First, some shapelets are longer than others, and longer
shapelets create more parameters for logistic regression. Sec-
ond, some datasets are imbalanced, meaning they have a dis-
proportionate number of samples for each class. Third, some
datasets contain test samples that do not have representative
samples in the training dataset. Finally, the distribution of
samples can vary significantly between classes.

As an example, the Wafer dataset contains sensor data from
manufactured silicon wafers. All 30 runs of Fast Shapelets
discovered the same shapelet of length 5, a relatively short
shapelet. This is further reduced down to 3 dimensions using
PCA, which means logistic regression is expected to perform
better, especially since there are 1,000 training samples.

However, Wafer’s training dataset is extremely imbalanced
because it contains 903 Normal samples and only 97 Abnormal
samples. Normal samples all come from sensors measuring

Logistic Regression vs. Euclidean Distance on Fast Shapelets
Dataset Name # Samples Log. Reg. Euclidean
Computers 250 62.6% 63.3%
DistalPhalanxOutline 276 74.2% 76.3%
ECG200 100 81.5% 70.9%
Earthquakes 139 71.8% 59.4%
FordA 1320 81.6% 74.4%
FordB 810 81.9% 72.6%
Ham 109 63.8% 63.2%
MiddlePhalanxOutline 291 52.0% 47.2%
PhalangesOutlines 1800 66.9% 67.6%
ProximalPhalanxOutline 600 81.0% 71.3%
Strawberry 370 93.7% 86.8%
Wafer 1000 89.3% 99.8%
Yoga 300 61.7% 60.3%

TABLE IV: Average fast shapelet accuracy on 2-class UCR
datasets with 100 or more samples. For the single best shapelet
found, logistic regression increased accuracy on 8 datasets,
decreased accuracy on 3 datasets, and was statistically no
different on 2 datasets (Computers and Ham).

manufactured silicon wafers that have no defects. These sam-
ples have very low variation, meaning all the Normal samples
occur in a very tight region. In contrast, Abnormal samples
consist of defective wafers which exhibit a wide variety of
behaviors. It is difficult to capture all possible Abnormal
behaviors, particularly with so few training samples from the
Abnormal class. This is an example of anomaly detection
where Normal samples are very tightly clustered, a natural
application for a Euclidean distance based method.

In summary, while multiple factors influence the classifica-
tion accuracy, logistic regression tends to improve performance
when given a sufficient number of samples since its decision
boundary has the capability to capture different sample dis-
tributions. When there are few training samples, Euclidean
distance typically performs slightly better since it only learns
a single parameter.

B. Fused LAsso Generalized eigenvectors (FLAG)

Table VI displays the results of FLAG using distances
learned through logistic regression compared to Euclidean
distance. Each entry is the accuracy produced by FLAG, which
is deterministic. We focus results on the 7 datasets listed,
since FLAG’s code requires parameters to be tuned to specific
datasets, and parameter values tuned to the training samples
for these datasets are available in the original author’s code3.

Given the low number of training samples for these 7
datasets, we expected Euclidean distance to outperform lo-
gistic regression, but the results are more mixed. As Table VI
shows, logistic regression achieves the same accuracy on the
Coffee dataset as Euclidean distance, decreases accuracy on
two datasets (ECGFiveDays and SonyAIBORobotSurfaceI),
and marginally improves accuracy on 4 datasets.

In addition to the characteristics that influence accuracy
listed in Section VI-A, FLAG’s mixed behavior is also caused

3https://github.com/houlu369/FLAG shapelets/tree/master/functions

Logistic Regression vs. Euclidean Distance on Fast Shapelets
Dataset Name # Samples Log. Reg. Euclidean
BeetleFly 20 79.5% 77.0%
BirdChicken 20 82.8% 74.3%
Coffee 28 93.7% 92.6%
ECGFiveDays 23 98.4% 99.8%
GunPoint 50 90.1% 93.4%
Herring 64 54.7% 50.5%
ItalyPowerDemand 67 64.0% 69.4%
Lightning2 60 59.3% 60.5%
MoteStrain 20 75.1% 81.5%
ShapeletSim 20 97.6% 100%
SonyAiboRoboSurfaceI 20 77.5% 92.0%
SonyAiboRoboSurfaceII 27 83.3% 81.1%
ToeSegmentationI 40 91.4% 90.4%
ToeSegmentationII 36 69.0% 70.4%
TwoLeadECG 23 98.2% 93.9%
Wine 57 73.6% 77.3%
WormsTwoClass 77 62.8% 69.0%

TABLE V: Average fast shapelet accuracy on 2-class UCR
datasets with under 100 samples. Due to limited samples,
logistic regression decreased accuracy on 8 datasets, but it
was statistically no different on 5 datasets and it increased
accuracy on 4 datasets.

Logistic Regression vs. Euclidean Distance on FLAG
Dataset Name # Samples Log. Reg. Euclidean
Coffee 28 100% 100%
ECGFiveDays 23 81.7% 92.0%
GunPoint 50 96.0% 93.3%
ItalyPowerDemand 67 94.8% 94.6%
MoteStrain 20 88.2% 81.8%
SonyAiboRoboSurfaceI 20 65.1% 92.8%
TwoLeadECG 23 99.7% 99.0%

TABLE VI: Deterministic FLAG results using logistic regres-
sion vs. Euclidean distance. Despite all datasets having fewer
than 100 training samples, logistic regression still provided
improvements on 4 datasets.

by its simultaneous use of multiple shapelets. By using a
Shapelet Transform (see Table III) with SVM, FLAG’s clas-
sification scheme is more robust than Fast Shapelets and can
mask impact of a single shapelet.

For instance, consider the Coffee dataset. Coffee contains
time series spectrographs for two different types of coffee
beans. FLAG discovers 98 shapelets containing between 14
to 43 data points. After PCA, longer shapelets can create
more parameters than the 28 training samples, which causes
some overfitting by logistic regression. However, many shorter
shapelets have clearer separation between samples. While the
performance using each individual shapelet varies between the
two distance metrics, using all 98 shapelets together to train
SVM results in 100% accuracy for both distance metrics.

C. Predicting Performance

In addition to evaluating both the Euclidean and logistic
regression approaches using accuracy, it is also useful to be

Fig. 4: Predictions for shapelet accuracy using logistic re-
gression vs. Euclidean distance for datasets containing 100
training samples or more. Each blue point corresponds to a
2-class UCR dataset containing listed in Table IV. Due to
the sufficient sample size, comparative performance is largely
predictable using only training data.

able to predict which method will perform better using only
the training dataset. For this, we use the Expected Ratio,
introduced in [26] and also used by [10].

The expected ratio uses two-fold cross validation on the
training dataset to compute the Expected Accuracy of both
methods. First, the training dataset is partitioned in two with
each partition containing the same number of samples for each
class. For each class ci, we placed the first |ci|2 samples from
class ci into the first partition and the remaining samples in
the second partition. This ensures each partition has nearly the
same number of samples for each class.

Each approach is trained on one partition and tested on the
other. The two resulting accuracies are averaged, producing
the expected accuracy. The expected accuracies are then used
to computed the expected ratio, shown in the equation below.

Expected Ratio =
Expected Accuracy (Log. Reg. Dist.)

Expected Accuracy (Eucl. Dist.)

The expected ratio is then compared to the Actual Ratio,
obtained by training each method using the entire training
dataset and testing on the test dataset, as defined in the
following equation.

Actual Ratio =
Actual Accuracy (Log. Reg. Dist.)

Actual Accuracy (Eucl. Dist.)

Figures 4 and 5 show the predictability of each method.
The x-axis shows the Expected Ratio (i.e. which method
was expected to perform better), while the y-axis shows the

Fig. 5: Predictions for shapelet accuracy using logistic re-
gression vs. Euclidean distance for datasets with less than
100 training samples. Each blue point corresponds to a 2-
class UCR dataset containing listed in Table V. Comparative
performance is more difficult to predict given the limited
number of training samples.

Actual Ratio (which method did perform better). Each blue
point corresponds to a single dataset, with datasets containing
100 training samples or more shown in Figure 4 (listed in
Table IV), while Figure 5 shows datasets with under 100
training samples (those listed in Table V). We only perform the
Expected Ratio prediction on Fast Shapelets, since the tuned
parameters for FLAG were obtained using all samples from
each entire training dataset [17].

The actual and expected ratios partition the 30 datasets from
the UCR data archive using Fast Shapelets into four quadrants:
true positives (TP), false positives (FP), false negatives (FN),
and true negatives (TN).

• True Positives (TP): Datasets in this category had
Expected Ratio > 1 and Actual Ratio > 1, meaning
better classification was expected with logistic regression,
and it was better.

• True Negatives (TN): Datasets in category had
Expected Ratio < 1 and Actual Ratio < 1, meaning
better results were expected with Euclidean distance, and
that prediction was correct.

• False Negatives (FN): Datasets in this category had
Expected Ratio < 1 and Actual Ratio > 1. This
means Euclidean distance was expected to perform better,
but instead, logistic regression provided higher accuracy.

• False Positives (FP): Finally, datasets in this category
had Expected Ratio > 1 and Actual Ratio < 1,
meaning logistic regression was expected to perform
better, but Euclidean distance actually did.

In short, the shaded quadrants (TP and TN) show correct

predictions where the Expected and Actual Ratios are either
both above 1 or both below 1, while the white areas (FP and
FN) show incorrect predictions.

Figure 4 shows the 13 UCR datasets that have at least
100 training samples. All 8 of the datasets where logistic
performed better were correctly predicted, but only 1 dataset
where Euclidean distance performed better was predicted.

The predictions for datasets containing under 100 samples
are shown in Figure 5. As expected, the accuracy was difficult
to predict. As logistic regression attempts to learn 2m + 1
parameters, where m < l (the length of the shapelet), this can
often exceed the number of training samples, particularly for
the smallest datasets which have as few as 20 training samples.
This overfitting makes it difficult to predict the accuracy of
logistic regression and also produces the decrease in accuracy
for the majority of datasets in Table V.

VII. CONCLUSIONS AND FUTURE WORK

This paper has introduced an approach to learning shapelet-
specific custom distances through two steps. First, given a
shapelet, the proposed mapping translates time series samples
to Euclidean space using each sample’s closest subsequence
to the shapelet. This space is then reduced through principal
component analysis and logistic regression learns a distance
metric custom to the shapelet. Results show that shapelet clas-
sification under this approach is more accurate than Euclidean
distance when given sufficient training samples.

Future work should focus on improving logistic regression’s
performance on datasets with limited training samples. This
could be accomplished by adding a regularizer to reduce
overfitting and experimenting with different types of functions
for decision boundaries. In addition, minority oversampling
techniques such as SMOTE [27] could be applied to datasets
with limited samples or datasets that suffer from class imbal-
ances. Other classifiers could also be applied to the Euclidean
space following the mapping scheme described in Section
IV-A to further improve shapelet classification accuracy.

REFERENCES

[1] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C.
Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E.
Stanley, “Physiobank, physiotoolkit, and physionet,” Circulation, vol.
101, no. 23, pp. e215–e220, 2000.

[2] O. Al-Jowder, E. Kemsley, and R. H. Wilson, “Detection of adulteration
in cooked meat products by mid-infrared spectroscopy,” Journal of
agricultural and food chemistry, vol. 50, no. 6, pp. 1325–1329, 2002.

[3] M. Biswal, Y. Hao, P. Chen, S. Brahma, H. Cao, and P. De Leon,
“Signal features for classification of power system disturbances using
PMU data,” in Power Systems Computation Conference (PSCC), 2016.
IEEE, 2016, pp. 1–7.

[4] Y. Chen, Y. Hao, T. Rakthanmanon, J. Zakaria, B. Hu, and E. Keogh, “A
general framework for never-ending learning from time series streams,”
Data Mining and Knowledge Discovery, vol. 29, no. 6, pp. 1622–1664,
2015.

[5] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM Computing Surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[6] E. Keogh and S. Kasetty, “On the need for time series data mining
benchmarks: a survey and empirical demonstration,” Data Mining and
Knowledge Discovery, vol. 7, no. 4, pp. 349–371, 2003.

[7] X. Xi, E. Keogh, C. Shelton, L. Wei, and C. A. Ratanamahatana, “Fast
time series classification using numerosity reduction,” in Proceedings of
the 23rd International Conference on Machine Learning. ACM, 2006,
pp. 1033–1040.

[8] L. Ye and E. Keogh, “Time series shapelets: A new primitive for data
mining,” in Proceedings of the ACM KDD International Conference on
Knowledge Discovery and Data Mining. ACM, 2009, pp. 947–956.

[9] D. J. Berndt and J. Clifford, “Using dynamic time warping to find
patterns in time series.” in KDD workshop, vol. 10, no. 16. Seattle,
WA, 1994, pp. 359–370.

[10] T. Rakthanmanon and E. Keogh, “Fast shapelets: A scalable algorithm
for discovering time series shapelets,” in Proceedings of the Interna-
tional Conference on Data Mining. SIAM, 2013, pp. 668–676.

[11] A. Mueen, E. Keogh, and N. Young, “Logical-shapelets: An expressive
primitive for time series classification,” in Proceedings of the ACM KDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2011, pp. 1154–1162.

[12] J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall, “Classi-
fication of time series by shapelet transformation,” Data Mining and
Knowledge Discovery, vol. 28, no. 4, pp. 851–881, 2014.

[13] J. Lines, L. M. Davis, J. Hills, and A. Bagnall, “A shapelet transform
for time series classification,” in Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
ACM, 2012, pp. 289–297.

[14] A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh, “The great
time series classification bake off: A review and experimental evalu-
ation of recently proposed algorithms,” Data Mining and Knowledge
Discovery, pp. 1–55, 2016.

[15] M. S. Cetin, A. Mueen, and V. D. Calhoun, “Shapelet ensemble for
multi-dimensional time series,” in Proceedings of the International
Conference on Data Mining. SIAM, 2015, pp. 307–315.

[16] J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme, “Learn-
ing time-series shapelets,” in Proceedings of the ACM KDD Interna-
tional Conference on Knowledge Discovery and Data Mining. ACM,
2014, pp. 392–401.

[17] L. Hou, J. T. Kwok, and J. M. Zurada, “Efficient learning of timeseries
shapelets,” in Proceedings of the AAAI Conference on Artificial Intelli-
gence, 2016.

[18] H. Zou, Y. Zhou, J. Yang, W. Gu, L. Xie, and C. Spanos, “Wifi-
based human identification via convex tensor shapelet learning,” in
Proceedings of the AAAI Conference on Artificial Intelligence, 2018.

[19] J. Zakaria, A. Mueen, and E. Keogh, “Clustering time series using
unsupervised-shapelets,” in Proceedings of the International Conference
on Data Mining. IEEE, 2012, pp. 785–794.

[20] L. Wei, E. Keogh, and X. Xi, “Saxually explicit images: Finding unusual
shapes,” in Proceedings of the International Conference on Data Mining.
IEEE, 2006, pp. 711–720.

[21] J. Lin, E. Keogh, L. Wei, and S. Lonardi, “Experiencing SAX: A novel
symbolic representation of time series,” Data Mining and Knowledge
Discovery, vol. 15, no. 2, pp. 107–144, 2007.

[22] N. Karampatziakis and P. Mineiro, “Discriminative features via general-
ized eigenvectors,” in Proceedings of the 31st International Conference
on Machine Learning, 2014, pp. 494–502.

[23] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological), pp.
267–288, 1996.

[24] Y. Chen, E. Keogh, B. Hu, N. Begum, A. Bagnall, A. Mueen, and
G. Batista, “The UCR time series classification archive,” July 2015.

[25] A. Bagnall, J. Lines, W. Vickers, and E. Keogh, “The UEA and UCR
time series classification repository,” 2016, www.timeseriesclassification.
com.

[26] S. L. Salzberg, “On comparing classifiers: Pitfalls to avoid and a rec-
ommended approach,” Data Mining and Knowledge Discovery, vol. 1,
no. 3, pp. 317–328, 1997.

[27] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“SMOTE: Synthetic minority over-sampling technique,” Journal of
Artificial Intelligence Research, vol. 16, pp. 321–357, 2002.

